

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

OPTIMIZATION OF WELD STRENGTH OF ALUMINIUM ALLOY BY APPLICATION OF ANALYTICAL HIERARCHY PROCESS

Bhaskar Bhowmick¹, Soumojit Dasgupta²

¹ PG Student Department of Mechanical Engineering JIS College of Engineering, Kalyani, Nadia.

² Assistant Professor, Department of Mechanical Engineering, JIS College of Engineering, Kalyani, Nadia.

Abstract

Here Analytical Hierarchical Process was used for optimization of weld strength of aluminium composite using Pulsed Current Tungsten Inert Gas Welding. The experiment was designed using Aluminium 6063. The research focuses on evaluating the importance of various welding parameters and their influence on the weld quality of aluminium alloys. The Analytical Hierarchy Process is utilized as a decision-making tool to prioritize and rank the significance of different welding parameters. The parameters considered for PCTIG welding were pick current, base current, pulse frequency and pulse on time. The optimum condition was at peak current 160A, base current of 60A, pulse on time 50%.

Keywords: Welding, PCTIG, AHP, Optimization, Weld Strength.

Introduction

Welding of aluminium alloy and aluminium composite materials using arc welding, such as PCTIG welding is inexpensive. The major challenge of PCTIG welding is the reduce weld strength. Constant current PCTIG welding on aluminium alloy causes reduced weld strength strength due to high heat input and low cooling rate of weld pool. There reduced strength results in coarse grain structure in weld zone and induces thermal stresses in heat affected zone. In PCTIG welding, current supplied to the weld zone is not constant in nature as opposed to normal PCTIG welding. In PCTIG the current oscillates its magnitude between base values and peak values. The peak value is higher than the base value which causes sufficient weld bead penetration and improves the weld bead contour. The base current on the other hand maintains a stable arc throughout the process. A suitable pulse frequency provides sample time to transfer excess heat from the weld and heat affected zone to the base metal, simultaneously reducing thermal stresses and the heat affected zone width. . Ugur Esme et. al. [1] This study investigated the multi-response optimization of tungsten inert gas welding (TIG) welding process for an optimal parametric combination to yield favourable bead geometry of welded joints using the Response Surface Methodology (RSM). J.J.Wang et.al. [2] An image sensing system for the TIG (tungsten inert-gas arc) welding process of aluminium alloy was established. The symmetry of the weld pool for aluminium alloy was studied when the welding current is large. Experiments show that using the image sensing to control the TIG weld width for aluminium alloy is an effective method. Pankaj C Patil et.al. [3] Aluminium alloys are alloys in which aluminium is the predominant metal. TIG welding technique is one of the precise and fastest processes used in aerospace industries, ship industries, automobile industries, nuclear industries and marine industries. Effect of welding parameters on the tensile strength and hardness of weld joint will analyse.

PC parameters	Desirable limit	Higher than the desired limit	Lower than the desired limit
Peak current	140-160AWeld depth or weld penetration	Above 160A Excessive penetration and burn through	Below 140A Inadequate penetration
Base current	40-60A Stable welding arc	Above 60A Unstable arc and wandering	Below 40A Short arc length causing discontinuous weld
Pulse on time	40%-60% weld surface free from arc splatters	Above 60% weld bead appearance similar to CCTIG	Below 40% poor weld bead surface appearance
Pulse frequency	2-10Hz Improve weld bead appearance	Above 10Hz presence of arc splatters	Below 2 Hz weld bead appearances similar to the CCTIG

Table 1: Welding Parameters and Levels: -

Fig-Schematic diagram of PCTIG Welding

Experimental setup

This section describes the experimental setup employed in the study, including the welding equipment, aluminium alloy specimens, and measurement instruments. Details regarding the selection and variation of welding parameters are provided, along with the rationale behind their choices. Safety protocols and precautions implemented during the experiments are also discussed.

The Analytical Hierarchy Process (AHP) is a very simple and widely used decision making tool. The AHP can solve many complex multi criteria decision-making problem hierarchically. This was applied to solve several manufacturing and production problems. The AHP process involves identifying a decision problem and then decomposing this into a hierarchy of smaller and simpler sub-problems, each of which could then be analysed independently, without losing focus of the overall decision problem at hand. In the AHP, the hierarchy structure is first constructed. At the top level of the hierarchy, the goal or the objective of the decision is placed. Next the criteria, sub-criteria (if any) and decision alternatives come in the subsequent descending levels.

Experimental procedure

The TIG welding parameters, such as pulse on time, pulse frequency, peak current and base current exert influence on tensile strength. To determine the working limits of the TIG welding parameters on 10 mm plate of aluminium composite from trail runs, the results are tabulated in Table 1.

Experimental runs were conducted using four factor and three levels. Taguchi L9 orthogonal array was used to design nine experiments. Various conditions are presented in Table 2.

					0
TIG	welding	Peak current	Base current	Pulse on time	Pulse frequency (Hz)
condition		(A)	(A)	(%)	
1		160	35	55	10
2		140	55	55	2
3		150	55	35	10
4		140	35	35	5
5		150	45	55	5
6		140	45	45	10
7		160	45	35	2
8		160	55	45	5
9		150	35	45	2

Table 2: Experimental conditions for TIG welding: -

During welding the thermocouple was marked 10mm away from the weld centre ans 30mm from the welding starting place to acquire data for time -temperature profile. Data were obtained using data acquisition system. This system consists of Lab view software coupled with National Instrument NI cDAQ9174 kit which uses a temperature – acquiring module.

Next, alternative matrices are constructed corresponding to each of the criteria using the same basic process. Since, there are six criteria, six alternative matrices are constructed. While assigning the values to alternative matrices, the trial runs which have a greater influence on increasing the UTS are given higher value compare to others. For example, in the alternative matrix corresponding to base current, the numerical value of 140 is assigned compared to other values whose influence were less on UTS.

Tensile test results: -

The cases in which the difference in global weights is negligible, they have almost the same influence. For example, alternatives 5 and 3 have almost similar influence on the UTS of the specimen.

Table:- 3 Tensile test results:-

Results

The Criteria Matrix: -

TIG W	elding 7	Frail 1	Tra	il2	Mean		Star	ndard Deviatio	n
parameters		(MPa)	(MI	Pa)	(MPa)				
1	9	96.05	84.2	20	90.10		5.53	3	
2	1	101.22	97.3	33	100.20		1.5		
3	9	95.47	84.2	24	88.72	88.72			
4	1	128.20	118	.43	122.80		4.9		
5	9	99.54	92.0	50	96.17		3.1		
6	1	110.65	97.4	40	104.5		6.9		
7	7 120.93				112.50		8.9		
8	8 142.50			.47	135.50		7.0		
9	1	114.27	101	.33	108.35		5.5		
To improve weld strength	Peak Current	Base Current	Pulse on time	Pulse Frequency	Peak Temperature	Cooling Rate	,	GM	Criteria Weight
	(A)	(A)	(%)	(Hz)					
Peak Current	1	1/4	5	2	1/3	1/5		0.717	0.0782
Base Current	5	1	7	5	2	1/2		2.213	0.2610
Pulse on time	1/6	1/7	1	1/2	1/6	1/7		0.211	0.0213
Pulse Frequency	1/3	1/5	2	1	1/5	1/5		0.398	0.0337
Peak Temperature	4	1/2	6	4	1	1/2		1.570	0.1733
Cooling Rate	6	2	8	6	3	1		3.225	0.2833

The global weights are obtained using the usual process prescribed in the AHP algorithm. It is evaluated by multiplying the local weight of each criterion with corresponding alternative weight and then adding them up

The Alternative matrix for peak current: -

Peak	E1	E2	E3	E4	E5	E6	E7	E8	E9	GM	Alternative
current	(160)	(140)	(150)	(140)	(150)	(140)	(160)	(160)	(150)		weight
E1 (160)	1	6	2	6	2	6	1	1	2	2.3570	0.2131
E2 (140)	1/5	1	1/2	1	1/2	1	1/5	1	1/3	0.3114	0.0214
E3 (150)	1/2	2	1	2	1	2	1/2	1/2	1	1	0.0705
E4 (140)	1/5	1	1/2	1	1/2	1	1/5	1/5	1/2	0.3123	0.0234
E5 (150)	1/2	2	1	2	1	2	1/2	1/2	1	1	0.0708
E6 (140)	1/5	1	1/2	1	1/2	1	1/5	1/5	1/2	0.3415	0.0212
E7 (160)	1	5	2	5	2	5	1	1	2	2.1341	0.2121
E8 (160)	1	5	2	5	2	5	1	1	2	2.2341	0.2023
E9 (150)	1/2	2	1	2	1	2	1/2	1/2	1	1	0.0605

The Alternative Matrix for Base Current: -

Base	E1	E2	E3	E4	E5	E6	E7	E8	E9	GM	Alternative
Current	(40)	(60)	(60)	(40)	(50)	(50)	(50)	(60)	(40)		weight
E1 (40)	1	1/6	1/6	1	1/3	1/3	1/3	1/6	1	0.2621	0.02012
E2 (60)	6	1	1	6	2	2	2	1	6	2.3214	0.2021
E3(60)	6	1	1	6	2	2	2	1	6	2.3315	0.2301
E4 (40)	1	1/6	1/6	1	1/3	1/3	1/3	1/6	1	0.2723	0.0212
E5(50)	5	1/2	1/2	3	1	1	1	1/2	3	1.0756	0.0705
E6(50)	3	1/2	1/2	3	1	1	1	1/2	3	1.1725	0.0705
E7(50)	3	1/2	1/2	3	1	1	1	1/2	3	1.1702	0.0702
E8 (60)	6	1	1	6	2	2	2	1	6	2.2245	0.2103
E9 (40)	1	1/6	1/6	1	1/3	1/3	1/3	1/6	1	0.2231	0.02123

The Alternative matrix for pulse on Time: -

2023 JETIR June 2023, Volume 10, Issue 6

www.jetir.org (ISSN-2349-5162)

Pulse on	E1	E2	E3	E4	E5	E6	E7	E8	E9	GM	Alternative
time (%)	(60)	(60)	(40)	(40)	(60)	(50)	(40)	(50)	(50)		weight
E1 (60)	1	1	4	4	1	2	4	2	2	2	0.1905
E2 (60)	1	1	4	4	1	2	4	2	2	2	0.1905
E3(40)	1/4	1/4	1	1	1/4	1/2	1	1/2	1/2	1/2	0.0476
E4(40)	1/4	1/4	1	1	1/4	1/2	1	1/2	1/2	1/2	0.0476
E5 (60)	1	1	4	4	1	2	4	2	2	2	0.1905
E6 (50)	1/2	1/2	2	2	1/2	1	2	1	1	1	0.0952
E7(40)	1/4	1/4	1	1	1/4	1/2	1	1/2	1/2	1/2	0.0476
E8 (50)	1/2	1/2	2	2	1/2	1	2	1	1	1	0.0952
E9 (50)	1/2	1/2	2	2	1/2	1	2	1	1	1	0.0952
a Alternotive	motrix for	Dulco Er	allonou								

The Alternative matrix for Pulse Frequency:

Pulse	E1	E2	E3	E4	E5	E6	E7	E8	E9		Alternative
frequency	(10)	(2)	(10)	(5)	(5)	(10)	(2)	(5)	(2)	GM	weight
(Hz)											
E1 (10)	1	7	1	4	4	1	7	4	7	3.0366	0.2350
E2 (2)	1/7	1	1/7	1/3	1/3	1/7	1	1/3	1	0.3625	0.0280
E3 (10)	1	7	1	4	4	1	7	4	7	3.0366	0.2350
E4 (5)	1/4	3	1/4	-1	1	1/4	3	1	3	0.9086	0.0703
E5 (5)	1/4	3	1/4	1	1	1/4	3	1	3	0.9086	0.0703
E6 (10)	1	7	1	4	4	1	7	4	7	3.0366	0.2350
E7 (2)	1/7	1	1/7	1/3	1/3	1/7	1	1/3	1	0.3625	0.0280
E8 (5)	1/4	3	1/4	1	1	1/4	3	1	3	0.9086	0.0703
E9 (2)	1/7	1	1/7	1/3	1/3	1/7		1/3	1	0.3625	0.0280

The Alternative matrix for Cooling Rate: -

The Alternative matrix for Peak Temperature: -

D I	114	TA				L D(D 0	TO	015	
Peak	EI	E2	E3	E4	E5	E6	E7	Eð	E9	GM	Alternative
Temp.											weight
E1	1	1/3	1/5	2	1/3	1/3	1/4	1/6	2	0.4010	0.0223
E2	3	1	1/2	3	2	2	1	1/3	5	1.3210	0.1123
E3	5	2	1	4	3	3	2	1/2	5	2.9032	0.2103
E4	1/2	1/3	1/4	1	1/3	1/3	1/4	1/7	1/2	0.2123	0.0132
E5	3	1/2	1/3	3	1	1	1/2	1/3	3	0.8326	0.0563
E6	3	1/2	1/3	4	1	1	1/2	1/4	4	0.8324	0.0539
E7	4	1	1/2	5	2	2	1	1/3	5	1.625	0.1235
E8	7	3	2	8	4	4	3	1	7	3.8923	0.2935
E9	1/2	1/5	1/6	2	1/4	1/4	1/4	1/7	1	0.2003	0.0212
$\frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}$											
Cooling	E 1	E2	E3	E4	E5	E6	E7	E8	E9	GM	Alternative
Cooling Rate	E1	E2	E3	E4	E5	E6	E7	E8	E9	GM	Alternative weight
Cooling Rate E1	E1	E2 1/7	E3 1/6	E4 1/3	E5 1/9	E6 1/6	E7 1/6	E8 1/9	E9 1/6	GM 0.1973	Alternative weight 0.0153
Cooling Rate E1 E2	E1 1 7	E2 1/7 1	E3 1/6 3	E4 1/3 5	E5 1/9 1/2	E6 1/6 3	E7 1/6 3	E8 1/9 1/3	E9 1/6 3	GM 0.1973 1.9822	Alternative weight 0.0153 0.1542
Cooling Rate E1 E2 E3	E1 1 7 6	E2 1/7 1 1/3	E3 1/6 3 1	E4 1/3 5 4	E5 1/9 1/2 1/4	E6 1/6 3 1	E7 1/6 3 1	E8 1/9 1/3 1/4	E9 1/6 3 1	GM 0.1973 1.9822 0.9259	Alternative weight 0.0153 0.1542 0.0720
Cooling Rate E1 E2 E3 E4	E1 1 7 6 3	E2 1/7 1 1/3 1/5	E3 1/6 3 1 1/4	E4 1/3 5 4 1	E5 1/9 1/2 1/4 1/7	E6 1/6 3 1 1/4	E7 1/6 3 1 1/5	E8 1/9 1/3 1/4 1/8	E9 1/6 3 1 1/5	GM 0.1973 1.9822 0.9259 0.3104	Alternative weight 0.0153 0.1542 0.0720 0.0241
Cooling Rate E1 E2 E3 E4 E5	E1 1 7 6 3 9	E2 1/7 1/3 1/5 2	E3 1/6 3 1 1/4 4	E4 1/3 5 4 1 7	E5 1/9 1/2 1/4 1/7 1	E6 1/6 3 1 1/4 4	E7 1/6 3 1 1/5 4	E8 1/9 1/3 1/4 1/8 1	E9 1/6 3 1 1/5 4	GM 0.1973 1.9822 0.9259 0.3104 3.1693	Alternative weight 0.0153 0.1542 0.0720 0.0241 0.2465
Cooling Rate E1 E2 E3 E4 E5 E6	E1 1 7 6 3 9 6	E2 1/7 1 1/3 1/5 2 1/3	E3 1/6 3 1 1/4 4 1	E4 1/3 5 4 1 7 4	E5 1/9 1/2 1/4 1/7 1 1/4	E6 1/6 3 1 1/4 4 1	E7 1/6 3 1 1/5 4 1/2	E8 1/9 1/3 1/4 1/8 1 1/5	E9 1/6 3 1 1/5 4 1/2	GM 0.1973 1.9822 0.9259 0.3104 3.1693 0.7743	Alternative weight 0.0153 0.1542 0.0720 0.0241 0.2465 0.0602
Cooling Rate E1 E2 E3 E4 E5 E6 E7	E1 1 7 6 3 9 6 6 6	E2 1/7 1 1/3 1/5 2 1/3 1/3	E3 1/6 3 1 1/4 4 1 1	E4 1/3 5 4 1 7 4 5 4 5	E5 1/9 1/2 1/4 1/7 1 1/4 1/4 1/4	E6 1/6 3 1 1/4 4 1 2	E7 1/6 3 1 1/5 4 1/2 1	E8 1/9 1/3 1/4 1/8 1 1/5 1/4	E9 1/6 3 1 1/5 4 1/2 1	GM 0.1973 1.9822 0.9259 0.3104 3.1693 0.7743 1.0251	Alternative weight 0.0153 0.1542 0.0720 0.0241 0.2465 0.0602 0.0797
Cooling Rate E1 E2 E3 E4 E5 E6 E7 E8	E1 1 7 6 3 9 6 6 6 9	E2 1/7 1 1/3 1/5 2 1/3 1/3 3	E3 1/6 3 1 1/4 4 1 1 4	E4 1/3 5 4 1 7 4 5 8	E5 1/9 1/2 1/4 1/7 1 1/4 1/4 1/4 1/4	E6 1/6 3 1 1/4 4 1 2 5	E7 1/6 3 1 1/5 4 1/2 1 4	E8 1/9 1/3 1/4 1/8 1 1/5 1/4 1	E9 1/6 3 1 1/5 4 1/2 1 4	GM 0.1973 1.9822 0.9259 0.3104 3.1693 0.7743 1.0251 3.4493	Alternative weight 0.0153 0.1542 0.0720 0.0241 0.2465 0.0602 0.0797 0.2682

Observation

The observations derived from the data analysis are discussed in detail. The relative importance and influence of different welding parameters on the weld quality of aluminium alloys are presented and analysed. The findings from the Analytical Hierarchy Process are used to identify the critical parameters that significantly affect weld quality.

Discussion on the results Obtained, based on the assessment done in this work, the following outcomes were obtained.

Conclusion

The conclusion section summarizes the key findings of the research and their implications. The study highlights the significance of the Analytical Hierarchy Process in assessing the importance of welding parameters and its potential for optimizing welding processes in the context of aluminium alloy weldability. The limitations of the study are acknowledged, and suggestions for future research directions are provided.

Reference

[1] Wang Qiang, Guang Yingchun, Cong Baoqiang QiBojin "Commercial Aluminium Alloy Surface for Tungsten inert gas welding" 2016.

[2] JJ Wang, Tao LIN, SB Chen "Obtaining weld pool vision information during aluminium alloy TIG welding" Vol.22(30) 219-227-2005.

[3] Pankaj C Patil, RD Shelke "Review on welding parameter effects on TIG welding of aluminium alloy." International Journal of Engineering Research and General Science3(3) 1479-1486-2015

[4] M. Tisza, I. Czinege, Comparative study of the application of steels and aluminium in light weight production of automotive parts, Int. J. Lightweight Mater. Manufact. 1 (2018) 229–238.

[5] Kumar, A., & Sundarrajan, S. (2009) "Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments", Materials & Design, Vol. 30(4), pp. 1288-1297.

[6] Sanjeev Kumar, (2010) "Experimental investigation on pulsed TIG welding of aluminium plate", International Journal of Advance Engineering Technology, vol-0I, pp. 54-59

[7] P Kumar, SH Mankar, CK Datta (2011) "Process parameters optimization of aluminium alloy 6061 with pulsed Gas tungsten arc welding", International Journal of Manufacturing Technology and Industrial Engineering, Vol. 2, pp. 49-54.B.A. Kumar et al. Dry sliding wear behaviour of stir cast AA6061-T6/AINp composite Transactions of Nonferrous Metals Society of China (2014)

[8] N Karunakaran, V Balasubramanian (2010) "Effect of pulsed current on gas tungsten arc welded Aluminium alloy joints", Journals of Science Direct (SP), Vol. 21, pp. 278-286.

[9] Indira Rani, M., & Marpu, R. N. (2012) "Effect of Pulsed Current TIG Welding Parameters on Mechanical Properties of J-Joint Strength of AA6351", The International Journal of Engineering and Science (IJES), Vol. 1(1), pp. 1-5.

[10] Yao Liu, Wenjing Wang, Jijia Xie, Shouguang Sun, Liang Wang, Ye Qian, Yuan Meng and Yujii Wei (2012). "Microstructure and mechanical properties of aluminium 5083 weldments by gas tungsten arc and gas metal arc welding", Mater Sci Eng A, Vol. 549, pp. 7-13

[11] Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh, (2013) "An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy", International Scholarly and Scientific Research and Innovation, Vol. 7, pp. 99-107.

[12] Arun Narayanan, Cijo Mathew, Vinod Yeldo Baby and Joby Joseph (2013)." Influence of Gas Tungsten Arc welding parameters in Aluminium 5083 alloy", Inter. J. Eng. Sci. Inno. Technol, vol.2, No.5, pp.269-277.

[13] Durgutlu, "Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel," Materials & Design, vol. 25, pp. 19-23, Feb. 2004.

[14] Shahi, Sahib Sartaj Singh, Nitin Singla, Sunil Pandey and Tarun Nanda, "Prediction of UTS And Toughness Properties of SAW Welded Joints", Proceedings of the Symposium of Joining of Materials, SOJOM, WRI, WMB-1, pp 1-12, 2004.

[15] Kumar and S. Sundarrajan, "Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy," The International Journal of Advanced Manufacturing Technology, vol. 42, pp. 118-125, Jun. 2008.

[16] S. Juang, "Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel," Journal of Materials Processing Technology, vol. 122, pp. 33-37, Mar. 2002.

[17] J. J. Wang, T. Lin, and S. B. Chen, "Obtaining weld pool vision information during aluminium alloy TIG welding," The International Journal of Advanced Manufacturing Technology, vol. 26, pp. 219-227, Oct. 2004.

[18] H S Wang, Z H Che and C Wu, Using Analytic Hierarchy Process and Particle Swarm Optimization Algorithm for Evaluating Product Plans, Eur. J. Oper. Res, Vol 37, page 1023-1034, 2010.

[19] C Mondal, S Bhattacharya and S Das, Parametric Optimization of Spot Welding of 17-4 Ph Stainless Steels Using the Analytical Hierarchy Process (AHP), Indian Weld J, Vol 44, No 4, page 69-77, 2011.

[20] K Sabiruddin, S Das and A Bhattacharya, Application of the Analytic Hierarchy Process (AHP) for Optimization of Process Parameters in GMAW, Indian Welding J, Vol 42, No 1, page 38- 46, 2009.

[21] C Muralidharan, N Anantharaman, V Balasubramanian and S G Deshmukh, Selection of a Welding Process Using Analytic Hierarchy Process, J Inst Eng (India), Vol 80, page 51-54, 1999.